Student 1:

4.1

$$
\text { Chile } \$ 360
$$

$$
(1,360)
$$

Chile $+1 \quad 360 / 2=\$ 180$
$(2,180)$
Chile $+2 \quad 360 / 3=\$ 120$
$(3,120)$

Chile $+4 \quad 360 \%=\$ 72$
$(5,72)$
Chile $9 \quad 360 / 10=\$ 36$
$(10,36)$
Chile $99 \quad 360 / 100=\$ 3.60$ $(100,3.60)$

$$
\begin{aligned}
& \text { The function } \\
& \text { is exponential. }
\end{aligned}
$$

People

Student 2:

4.1

$360 / 180=2$
$180 / 120=1.5$
$120 / 90=1 . \overline{3}$
Not exponential
blk no common

$$
90 / 72=1.25
$$

Student 3:
4.1

$$
f(x)=\frac{360}{n}
$$

$$
f(x)=\frac{360}{x}
$$

where x is the number of people and $f(x)$ is the cost be per person.

x	$f(x)$
1	$360 / 1=360$
2	$360 / 2=180$
3	$360 / 3=120$
4	$360 / 4=90$
5	$360 / 5=72$
6	$360 / 6=60$

Domain: $(-\infty, \infty)$
Range: $(-\infty, \infty)$

$$
\begin{aligned}
& \text { As } x \rightarrow-\infty, y \rightarrow 0 \\
& \text { As } x \rightarrow \infty, y \rightarrow 0
\end{aligned}
$$

Student 4:

$$
-\frac{1}{x}
$$

Marcos is right. The end behavior for all rational functions approaches zero. By changing the denominator the graph translates left and right.

