Student 1
If no human beings are left to kill the cockroaches, how long will it take for cockroaches to cover the state of North Carolina? Explain how you arrived at your estimate.

x	y
0	1
.5	2
1	4
1.5	8

How long would it take for cockroaches To cover the USA?

x	y
2	16
2.5	32
3	64
3.5	128

\qquad

Student 3

$$
\begin{aligned}
& y=P e^{r t} \\
& y=1 \cdot e^{r t}
\end{aligned}
$$

After 1 year, 4 bugs

$$
\begin{aligned}
& 4=1 \cdot e^{r .1} \\
& 4=e^{r} \\
& \ln 4=\ln e^{r} \\
& \ln 4=r \cdot \ln e \\
& r=\ln 4 \approx 1.38629 \\
& y=1 \cdot e^{t \cdot \ln 4}
\end{aligned}
$$

$$
\text { NC } 53,81954 \text { miles }
$$

$$
\begin{aligned}
& 53,819 \text { sq. miles } \\
& 2.16056 \times 10^{\text {.4 }} 54 \text {. inches }
\end{aligned}
$$

$$
2.16056 \times 10^{14} \div 3
$$

$$
=7.2018 \overline{6} \times 10^{13}
$$

$$
7.2018 \overline{6} \times 10^{13}=e^{t \cdot \ln 4}
$$

$$
\ln \left(7.2018 \overline{8} \times 10^{13}\right)=\ln e^{t \cdot \ln 4}
$$

$$
\ln \left(7.2018 \overline{6} \times 10^{13}\right)=t \cdot \ln 4
$$

$$
t=23.0167 \text { years }
$$

Student 4

x	y
1	2
2	4
3	08
4	16
5	32
6	64
7	128

$\cdot x$ is \# of 6 month periods of time
. y is \# of cockroaches

$$
y=2^{x}
$$

year 13
$13 / .5=26$ six month periods

$$
y=2^{26}=67,108,864 \text { cockroaches }
$$

year 20
$20 \% 5=40$ six month periods

$$
y=2^{40} \approx 1.0995 \times 10^{12} \text { cockroaches }
$$

year 40

$$
\begin{aligned}
& 40 / .5=80 \text { six month } \\
& \text { periods }
\end{aligned}
$$

